skip to main content


Search for: All records

Creators/Authors contains: "Pal, Sankhajit"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Over the last two decades, polymers with superior H2/CO2separation properties at 100–300 °C have gathered significant interest for H2purification and CO2capture. This timely review presents various strategies adopted to molecularly engineer polymers for this application. We first elucidate the Robeson's upper bound at elevated temperatures for H2/CO2separation and the advantages of high‐temperature operation (such as improved solubility selectivity and absence of CO2plasticization), compared with conventional membrane gas separations at ~35 °C. Second, we describe commercially relevant membranes for the separation and highlight materials with free volumes tuned to discriminate H2and CO2, including functional polymers (such as polybenzimidazole) and engineered polymers by cross‐linking, blending, thermal treatment, thermal rearrangement, and carbonization. Third, we succinctly discuss mixed matrix materials containing size‐sieving or H2‐sorptive nanofillers with attractive H2/CO2separation properties.

     
    more » « less